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Quantum variances and squeezing of output field from NOPA
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Abstract

The quadrature phase squeezing of coupled-mode and intensity difference squeezing between signal and idler mode of
output field from continuous nondegenerate optical parametric amplifier (NOPA) are theoretically analyzed and compared.
The calculation results provide design references for nonclassical light generation system. © 1999 Published by Elsevier

Science B.V. All rights reserved.

PACS: 42.50; 42.65

1. Introduction

Over the past twenty years the properties of non-
classical states of light with squeezed quantum fluc-
tuations have been extensively studied, both theoreti-
cally and experimentally [1]. The continuous optical
parametric oscillator (OPO) without injected subhar-
monic signal and amplifier (OPA) with injected sig-
nal are important schemes to generate squeezed states
of light. The degenerate optical parametric oscillator
(DOPO) and optical parametric amplifier (DOPA)
have been successfully used to produce quadrature
squeezed light of single-mode [2—4]. The two-mode
quadrature squeezed vacuum state of light and the
quantum correlated twin beams with squeezed inten-
sity difference fluctuation have been generated from
continuous Nondegenerate optical parametric oscilla-
tors (NOPO) respectively operated below and above
the oscillation threshold [5-7,10]. Recently, the in-
terests of study on the nonclassical states of light
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concentrate on improving optical measurement sensi-
tivity to beat the the vacuum fluctuation of the
electromagnetic field. The guadrature squeezed vac-
uum state of light has been employed for improve-
ments in measurement precision beyond SQL in
Mach-Zehnder [11] and polarization interferometery
[12], the detection of directly encoded amplitude
modulation [13], spectroscopic measurements of
atomic cesium [14]. The intensity difference squeezed
twin beams have been used in sub-shot-noise optical
measurements such as small signal recovery [15],
measurements of transmissivity [16], amplitude mod-
ulated signal [17] and weak absorption [18] and
two-photon absorption spectroscopy [19]. To practi-
cal applications the stability and reliability of non-
classical light generation systems are of great impor-
tance. By injecting a seed wave into a type I DOPA,
Miynek’s group in Konstanz [3] obtained continu-
ous-wave bright quadrature squeezed state of light
with excellent long-term stability over several hours.
Later, a series of advanced quantum measurement
experiments were accomplished on this DOPA sys-
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tem [4,20,21]. It has been well demonstrated that
long-term stability of OPA is much better than OPO.
On the other hand, the frequency of output wave
from OPA can been locked on the frequency of
injected signal, so that the investigation on OPA can
provide useful information to develop the tunable
OPA, that is one of the most hopeful tunable coher-
ent light sources. Therefore, it is necessary to study
the quantum optical properties of output fields from
OPA.

So far, to our knowledge there is no publication to
discuss the quantum variances and squeezing of out-
put fields from NOPA with type II crystal in detail.
In this paper, the quantum variances and squeezing
of output field from type-II continnous NOPA will
be theoretically analyzed. The dependences of
quadrature phase squeezing of output coupled mode
and intensity difference squeezing between output
twin beams on the amplitude of pump field and
injected signal field will be numerically calculated.
The generation condition of quadrature phase and
amplitude squeezed state light from NOPA will been
discussed. The decay rates due to the input-output
coupler and extra cavity losses have been included in
the motion equations. The calculated results provide
the useful references for design of practical NOPA.

2. The model

The NOPA device, which is pumped by harmonic
wave of frequency 2w and injected by two subhar-
monic waves with degenerate frequency (v, = w, =
w) but orthogonal polarization is shown in Fig. 1.

Fig. 1. Scheme of an Optical Parametric Amplifier. af", a" and
ai® are the incoming pump, signal and idler fields. v, and vy, are
the contributions to cavity damping from the input-output cou-
pling and losses, respectively.

The harmonic and two subharmonic modes in the
cavity are described by a,, «, and «,. We suppose
that there are completely identical losses for «, and
a, in the system and denote vy, the decay rate of
amplitude subharmonic modes due to transmission of
the input-output coupler and vy, due to all other
cavity losses, respectively. The total loss rate for
each of these modes is thus y= vy, + v,. The trans-
mission of input-output coupler and extra losses for
the pump mode «, are taken to be y,, and vy, so
that the total loss rate for the pump mode is y, = 7,
+ 7v4.- Assuming zero detuning of the cavity, the
equations of motion for the intracavity modes with
the rotating wave approximation are as follows [7]:

d0= —yoao—Ka1a2+€+ 2‘YOCCO(I)’ (la)
@ =—(v+v)a +Kaga; +2vy, af
27 e(1), (16)

@, =—(y,+ V), + ey + 2y, azm
+127.¢)(1), (1c)

where, « is the nonlinear coupling parameter, &
=2Y0, @ is the coherent field driving pump
mode, @" and c,(¢) are the incoming fields, associ-
ated with the coupling mirror and with the extra loss
respectively. In Egs. (1), we have assumed that the
pump and both signal and idler beams triply resonate
in a cavity. At first, by choosing a proper phase we
made «,, «,, a, to be real and taking da,/dt =0,
the steady state equations are obtained:

0= —y,ap— ka a, + &, (2a)
0= —vya, +kaya, +2v,B8, (2b)
0= —vya, +kaja + 2y, B. (2¢)

Here we have assumed that a;" = 8+ b,(¢), and
a;* = B+ b,(t) have the same non-zero mean value
B, but different fluctuations (b,(z) # b,(#)) and c (1)
have zero mean value, i.e. the vacuum fluctuation.
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Let r = a, = a,, the solution of Eqs. (2) is given:

V27, B

e—krt vy

ao = = — —
Yo K Kr
s KET Yo Yoy27s B
0=r"— = . (3)
K K

In the case of B=0, we get the parametric
oscillation threshold of the cavity ™ = y,y/« from
Eq. (3) and the equations go back to the expressions
of NOPO.

In the case of non-zero subharmonic input ( B #
0), Eq. (3) is a cubic equation. Its solution and the
classical behavior of the system given from the
solution have been discussed by Harrison et al. [8]
and Schiller et al. [9] in detail. The addition of a
non-zero coherent input B destroys the symmetry of
the standard parametric oscillator, in which the
steady-state solution is undergoes a pitchfork bifur-
cation when the pumping reaches the threshold. There
are two boundary values of pump power in this
system, corresponding to positive and negative
pumping respectively, if pump power beyond the
boundaries the bistability appears (see Refs. [8,9])

When pump field and injected wave are not in
phase the equations (1) of motion can be solved
numerically. Fig. 2 gives the intracavity amplitude r
as functions of the relative phase. It is clearly that
the intracavity amplitude has the maximum value
when ¢ =2nm, (n=0,1,2,...), (the down-conver-
sion phase match condition is satisfied) and reaches

intracavity amplitude r (A.U.)

n 2n 3n 4n
relative phase ¢

Fig. 2. Steady-state solution of the intracavity amplitude r as
function of the relative phase of pump and injected signal wave.

Yor/xk2=1,6/e"=09,/27,8/" =0.1.

the minimum value when ¢=Qn+ Dw, (n=
0,1,2,...) (the phase matching condition is broken).

In order to calculate the variances and squeezing
of the quantum fluctuations of the system, we use a
semiclassical input-output formalism. More obvi-
ously, defining fluctuation operators a; = «a; + da,,
and linearizing Eqgs. (1), we obtain the fluctuation
dynamic equations [7]

Say(1) = — v, 8ay(t) — Kr[6al(t) + Saz(t)]

+1270, bo((1) + 1270, co(1) (42)

8, (1) = — y8a (1) + k[ @y (1) + réay(t)]

+y27, bi(2) +y27. ¢ (1), (4b)
da,(t) = —yda,(t) + K[aoéal* () + r8a0(t)]
+127, by(1) + 127, ¢5(1) . (4c)

3. The variances of output field from NOPA

3.1. Variances of quadrature components of output
coupled-mode

The coupled mode is defined as
1 1
d=—(a +a), di=—-—(a+af), 5
= glata), &= (af+a7), (5
and its two quadrature components are

X, = +a,+af+a;),

L
‘/_(al
X = ‘/- (a+a,—a/—ay). (6)

Assuming that the mean fields are real, we can
interpret X, and X_ quantities as amplitude and
phase components, respectively. The fluctuations of
the two components are

8X. (1) = [8a (1) + 8ay(1)
+5al+(t) + 8a; (1)], (72)
8X_(t) = [aa,(t) + 8a,(1)

—Sal (1) - 8at (1)]. (7b)
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and the fluctuation equation of motion become
8X_ (1) = —(yF kay)8X, (1) + V2 krdX (1)

+127, 8X 4 (1) +127, 8X5 (1), (8)
where 8X° = 3(8a, + Say) and 8X° = 5:(8ay —
day) denote the two quadrature fluctuations result-
ing from pump noise, §X* and 8X¢ are connected
to the fluctuation of input subharmonic and extra
losses of the cavity respectively.

Taking the Fourier transform of Eq. (8), we get

5X, (w) = W[\/—KN‘}X (w)
+27, 86X (@) + 127, 8X¢ ()],
(9a)
3X~(w)=m[\/fxr3X9(w)

+12y, 86X’ (w) + 2, SXﬁ(w)] .
(9b)
Using the boundary condition at the output cou-
pling mirror a®(w) =2y, a(w) — a™(w), we
obtain the output fluctuation in term of the input
fluctuation. The quadrature components of output

fluctuations are:
V27

8X$“‘(w)~—m[\/—l<r5)( (o)
+27. X ()]
p— Y. T KQY) —iw
(‘y(‘y;ykao) +)iw oX:(w),
(10a)
out ‘/r
8X° (w)—m[rkr&)( (w)
+1/27. 8X‘(w)]
(yl)(Y + Ka:)ao_)lw BX2(w).
(10b)

Assuming that the fluctuation of input waves and
noise of extra losses are uncorrelated, we have

Var(8X9 ,w)=Var(8X" )
~ Var(8X% ,0) = 1. (11)

From Egs. (10), we calculate the output variances:

47y
(y-— Kozo)2 + w?

Var(SXi“‘,a)) =

4ybr<2r2

(v— Ka0)2 + w?

(vo— v+ Ka0)2 +
(v= K"‘o)z + o’

(12a)
4v,y.
Var(SXf“‘,w) = 'Y;,‘Y;
(y+xay) + w?
4'yb;<2r2
(y+ Ka0)2+ w?
(yb Kao) + w?
(y+ Kao) + w?
(12b)

If the output variance is less than 1, we say that it
is squeezed.

For the other coupled mode d, =1/V2 (a, — a,)
in the perpendicular polarization with respect to d,
the same analyses and similar conclusions can be
performed and obtained. While the system can be
regarded as a NOPA with injected vacuum in orthog-
onal polarization with above mentioned injected sig-
nal. The fluctuation properties of output field are
identical with d|, the only difference is that it has
zero mean intensity, i.e., it is a squeezed vacuum.
Therefore, we can conclude that the system can
generate bright and vacuum squeezing on two differ-
ent polarisations.

3.2. Variance of intensity difference between output
quantum correlated twin beams

The fluctuation of the intensity difference of the
signal and idler modes is

D(1)=8(1, ~1L)=58(aa, —aja,)
=r[8a,(t) + 8a; (t) — a,(1t) — dai (1)],
(13)
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and the equation of motion is
D(t) = —yD(1) = kayD(1) + 2y, D*(1)
+y2y.D(t). (14)

The important point to notice is that the pump
fluctuations were cancelled in the intensity differ-
ence fluctuation. Solving Eq. (14) fluctuation of
output intensity difference in frequency domain is

obtained:
12, 2.

DOUt —
(@) (y+kay) tiw

D(w)

(Yo — 7. — Kkay) —iw
(y+kay) tiw

D'(w).

(15)

Using the same process as above-mentioned, the
output variance is straight-forwardly calculated

4v,7.
Var( D, w) = L >
(y+ kay) + 0?

. (vo—7v.— Kao)2 + w?
(y+ Kon)2 + w?

(16)

4. The noise squeezing of output field from NOPA

In Fig. 3 and Fig. 4 the dependences of output
variances on the input pump and injected subhar-
monic amplitudes are presented. The parameters & =
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Fig. 3. Variances as functions of the normalized pump amplitude
lel/eM B/e™=0.1, ¢ =09 Solid line: two-mode squeezing.
Dotted line: intensity difference.
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Fig. 4. Variances as functions of the normalized subharmonic
amplitude B/&™, |el/e™ =09, £ =0.9. Solid line: two-mode
squeezing. Dotted line: intensity difference.

v,/(v, +7v.), x=¢/&", and n=B/&™ in the fig-
ures denote the input-output coupling efficiency, nor-
malized pump power and injected power of signal,
respectively. The best squeezing is obtained at the
limit w — 0. Fig. 3 gives the variances of squeezed
quadrature component (Var{(3X°",w)) and intensity
difference of output field as the functions of pump
power, where ¢ = 0.9, n = 0.1. Both variances reach
the minima at the pump power of a little below the
threshold. In the situation of OPO and NOPO the
minima is at the oscillation threshold (&= &™) [7],
however with an injected signal the minima moves
towards lower power. Above the threshold, the two-
mode quadrature variance increases, but the intensity
difference variance keeps constant, that is similar to
the calculation based on NOPO[7]. Fig. 4 shows the

-25 shot nolse limit

-40%

amplitude noise power

output amplitude noise power (dBm)

.50 1 L -

n n 3n 4n
relative phase (¢) between pump and injected wave

Fig. 5. Output amplitude noise power as functions of the relative
phase between pump and injected wave. §/&" =0.1,|&|/e" =
0.9, £=009.
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Fig. 6. Output variances as functions of the scaled pump ampli-
tude £/&%,8/e%=0.1, £ =0.9 Solid line: phase component.
Dotted line: amplitude component. SQL: normalized standard
quantum limit.

variances of output fields as the functions of input
subharmonic amplitude. It is clear that the two vari-
ances increase along with the input subharmonic
amplitude since the more extra noise is brought in
the cavity by the injected signal og coherent state.
From Fig. 3 and Fig. 4, we can see that the two-mode
quadrature variance is always larger than the inten-
sity difference variance. The physical origin of this
fact is that the influence of pump noise on the
intensity difference fluctuation has been eliminated.
Fig. 5 shows the amplitude squeezing as functions of
relative phase ¢ between pump and injected wave.
The lowest amplitude noise is obtained at the out-
of-phase points that is in agreement with the experi-
mental result present by K.Schneider et al. [3]. Fig. 6
shows the variances of output phase-component and
amplitude-component as the function of pump ampli-
tude, here negative power means out of phase. At the
case of out-of phase the injected subharmonic mode
is deamplified and the variances of output amplitude
component is squeezed below the normalized stan-
dard quantum limit. It is should be noticed that
Var(8X",0) - Var(8X*"',0) > 1 in the figure since
the extra losses have been evaluated in our calcula-
tions, so the total noise of output field is higher than
the SQL level.

5. Conclusion

In summary, we have investigated in detail the
noise properties of the output light field generated by

a non-degenerate parametric amplifier. The most im-
portant results are as follows:

1. The output fields have both properties of two-
mode quadrature squeezing and intensity difference
squeezing.

2. The two-mode quadrature squeezing is sensi-
tive not only to the pump noise and pump power, but
also the power of injected signal. The intensity dif-
ference squeezing is insensitive relative to the pump
noise and pump power when the OPA is operating
above the threshold. Below threshold the squeezing
of the two types decreases along with the reduction
of pump amplitude.

3. It is possible to generate the two-mode bright
phase or amplitude squeezing using NOPA. The
quadrature squeezing and intensity difference
squeezing of output field from a NOPA are calcu-
lated and compared in both cases of above and
below the oscillation threshold. Due to that the pump
noise, injected signal and extra noise have been
included in the calculation, the calculated results can
provide the useful references for design of NOPA
which will be employed to produce stable nonclassi-
cal lights.

4. The behavior of NOPA system at any relative
phase between pump field and injected signal has
been also discussed.
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